• Угол раствора и радиус конуса

    Конус - радиус, образующая, высота, площадь, объем, площадь боковой поверхности, площадь основания, площадь осевого сечения, угол раствора, угол наклона образующей, радиус вписанной сферы, радиус описанной сферы

    Свойства

    r - радиус
    d - диаметр
    l - образующая
    h - высота
    V - объем
    S - площадь
    α, β - угол
    R - радиус описанной сферы
    r1 - радиус вписанной сферы
    Угол раствора и радиус конуса

    Вычисление

    Угол раствора и радиус конуса способствуют вычислению всех возможных параметров конуса за счет двух треугольников, которые они образуют. Первый треугольник – равнобедренный, с двумя образующими и диаметром конуса, из которого можно рассчитать угол наклона конуса, между образующей и основанием. Второй треугольник – прямоугольный с высотой и радиусом в качестве катетов и образующей конуса, как гипотенузой. (рис. 40.2, 40.1) β=(180°-α)/2 h=r tan⁡β l=r/cos⁡β

    Зная радиус конуса, можно сразу найти его диаметр, а также периметр основания и площадь, не прибегая к дополнительным заменам. d=2r P=2πr S_(осн.)=πr^2

    Чтобы найти площадь боковой поверхности, кроме радиуса понадобится образующая конуса, которая равна отношению радиуса к косинусу угла наклона, а чтобы найти площадь полной поверхности, к полученному выражению нужно прибавить площадь основания конуса. S_(б.п.)=πrl=(πr^2)/cos⁡β S_(п.п.)=S_(б.п.)+S_(осн.)=πr(r+l)=πr^2 (1+1/cos⁡β )

    Объем конуса равен одной трети произведения площади основания на высоту, а так как высота представляет собой произведение радиуса на тангенс угла наклона, то объем получится уменьшенным в три раза произведением числа π на куб радиуса и тангенс угла. V=(hS_(осн.))/3=(πr^3 tan⁡β)/3

    Радиус сферы вписанной в конус зависит только от радиус и угла наклона, а радиус сферы описанной вокруг конуса можно найти через угол раствора конуса и радиус основания. (рис.40.3, 40.4) r_1=r tan⁡〖β/2〗 R=r/sin⁡α