• Диагональ куба

    Куб - сторона, площадь, площадь стороны, объем, длина рёбер, периметр стороны, диагональ, диагональ стороны, радиус вписанной сферы, радиус описанной сферы

    Свойства

    a - ребро
    d - диагональ
    V - объем
    S - площадь
    P - периметр
    r - радиус вписанной сферы
    R - радиус описанной сферы
    Диагональ куба

    Вычисление

    Диагональ куба – это отрезок, который находится во внутреннем пространстве куба, благодаря тому, что его вершины находятся на противоположных сторонах. Поэтому для того чтобы представить диагональ куба в алгебраическом виде, необходимо заключить ее в фигуру, соединив данную диагональ и боковое ребро, исходящее из любой вершины диагонали через диагональ основания. Получив, таким образом, прямоугольный треугольник, можно составить отношение сторон по теореме Пифагора и вывести формулу для диагонали куба. Ребро куба будет равно отношению диагонали к корню из трех. a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3 a=D/√3

    Площадь стороны куба равна ребру куба, возведенному во вторую степень, площадь боковой поверхности представляет собой четыре таких площади стороны, а площадь полной поверхности состоит из 6 граней. Площади куба, выраженные через диагональ, принимают следующий вид: S=a^2=D^2/3 S_(б.п.)=4a^2=(4D^2)/3 S_(п.п.)=6a^2=2D^2

    Объем куба равен его ребру в третьей степени, а объем куба, зная диагональ куба, будет равен диагонали, возведенной в третью степень, и деленной на три корня из трех. V=a^3=D^3/(3√3)

    Чтобы вычислить периметр куба, нужно ребро куба умножить на двенадцать. Если выразить периметр грани через диагональ куба, то он примет вид отношения диагонали, умноженной на четыре корня из трех. P=12a=4√3 D

    Чтобы найти диагональ стороны куба, то есть диагональ, лежащую на боковой грани, можно воспользоваться формулой диагонали квадрата, которая выглядит как произведение стороны квадрата/ребра куба на корень из двух. d=a√2=(D√2)/√3

    Радиус вписанной в куб сферы равен половине ребра куба, то есть диагонали куба, деленной на два корня из трех, а радиус описанной вокруг куба сферы равен половине самой диагонали куба. (рис. 2.2, рис.2.3) r=a/2=D/(2√3) R=D/2