• Площадь боковой поверхности куба

    Куб - сторона, площадь, площадь стороны, объем, длина рёбер, периметр стороны, диагональ, диагональ стороны, радиус вписанной сферы, радиус описанной сферы

    Свойства

    a - ребро
    d - диагональ
    V - объем
    S - площадь
    P - периметр
    r - радиус вписанной сферы
    R - радиус описанной сферы
    Площадь боковой поверхности куба

    Вычисление

    Площадь боковой поверхности куба объединяет в себе все боковые грани куба, которые представляют собой квадраты с равными сторонами и площадями. Поэтому площадь боковой поверхности куба равна ребру, возведенному во вторую степень и умноженному на четыре, а ребро куба, выраженное через площадь боковой поверхности, равно квадратному корню из площади, деленному на 2. S_(б.п.)=4a^2 a=√(S_(б.п.)/4)=√(S_(б.п.) )/2

    Вычислить площадь одной грани куба через площадь боковой поверхности можно не прибегая к извлечению квадратного корня, исходя из ее определения. Для этого нужно площадь боковой поверхности разделить на количество граней – 4. Чтобы найти площадь полной поверхности через площадь боковой поверхности, необходимо разделить последнюю на 4 и умножить на 6. S=S_(б.п.)/4 S_(п.п.)=6/4 S_(б.п.)=(3S_(б.п.))/2

    Объем куба обычно рассчитывается как третья степень ребра куба, для того чтобы вычислить объем куба через площадь боковой поверхности нужно подставить вместо ребра выведенную раннее формулу. V=a^3=(√(S_(б.п.) )/2)^3=√(〖S_(б.п.)〗^3 )/8

    Периметр куба является длиной всех его ребер a, следовательно, для его нахождения необходимо умножить одно ребро на 12. Чтобы найти периметр куба через площадь боковой поверхности, подставим вместо стороны a половину квадратного корня из площади. P=12a=12 √(S_(б.п.) )/2=6√(S_(б.п.) )

    Чтобы вычислить диагональ стороны куба, наиболее быстрым способом будет воспользоваться формулой для диагонали квадрата, которая равна стороне квадрата, умноженной на корень из двух. Так как ребро куба, являющееся по совместительству стороной квадрата, равно корню из площади боковой поверхности, деленному на два, то диагональ стороны куба будет равна квадратному корню из площади, деленной на два, полученному в ходе преобразования коэффициентов. d=a√2=√(S_(б.п.) )/2 √2=√(S_(б.п.)/2)

    Найти диагональ куба можно из прямоугольного треугольника, который можно получить, соединив боковое ребро и диагональ куба через диагональ основания. По теореме Пифагора, диагональ куба будет равна ребру куба, умноженному на корень из трех. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=√(3S_(б.п.) )/2

    Если в куб вписать сферу, то ее радиус становится равным половине ребра куба, или квадратному корню из площади боковой поверхности, разделенной на 4. (рис. 2.2) r=a/2=√(S_(б.п.) )/4

    Радиус сферы, описанной вокруг куба, можно найти через площадь боковой поверхности, если, умножив ее на три, извлечь квадратный корень и разделить его на 4. (рис.2.3) R=D/2=√(3S_(б.п.) )/2