• Ребро и сторона основания правильной пирамиды

    Пирамида - сторона, ребро, площадь поверхности, площадь основания, площадь боковой поверхности, высота, апофема, периметр, объем, угол наклона граней, угол наклона ребер, угол сторон основания, радиус описанной окружности, радиус вписанной окружности, радиус описанной сферы, радиус вписанной сферы

    Свойства

    a - сторона основания
    b - ребро
    l - апофема
    h - высота
    r - радиус вписанной окружности
    r1 - радиус вписанной сферы
    V - объем
    S - площадь
    P - периметр
    α, β, γ - угол
    R - радиус описанной окружности
    R1 - радиус описанной сферы
    Ребро и сторона основания правильной пирамиды

    Вычисление

    Сторона основания пирамиды является стороной правильного многоугольника, исходя из этого, можно найти все параметры пирамиды, связанные с основанием, воспользовавшись формулами для правильных многоугольников. P=n(a+b) S=(na^2)/(4 tan⁡〖(180°)/n〗 )

    Чтобы найти радиус окружности, вписанной в основание правильной пирамиды, нужно разделить сторону основания на два тангенса из 180 градусов, деленных на количество сторон в основании. (рис.34.1) r=a/(2 tan⁡〖(180°)/n〗 )

    Радиус окружности, описанной вокруг основания правильной пирамиды, равен отношению стороны основания к двум синусам того же угла. (рис.34.2) R=a/(2 sin⁡〖(180°)/n〗 )

    Угол γ между сторонами правильного многоугольника, заложенного в основание пирамиды, легко найти, умножив 180 градусов на количество сторон многоугольника без двух, и деленное на полное количество сторон. (рис.34.3) γ=180°(n-2)/n

    Зная боковое ребро в совокупности со стороной основания, можно вычислить высоту пирамиды и ее апофему из прямоугольных треугольников, которые они образуют. (рис.34.5, 35.1) h=√(b^2-R^2 )=√(b^2-(a/(2 sin⁡〖(180°)/n〗 ))^2 ) l=√(b^2-a^2/4)

    Косинус угла между боковым ребром и основанием будет равен отношению радиуса окружности, описанной вокруг основания, к боковому ребру пирамиды, а косинус угла между апофемой и основанием – отношению радиуса вписанной в основание окружности к апофеме. (рис.34.4,34.5) cos⁡α=R/b=a/(2b sin⁡〖(180°)/n〗 ) cos⁡β=r/l=a/(2 tan⁡〖(180°)/n〗 √(b^2-a^2/4))

    Площадь боковой поверхности пирамиды складывается из площадей треугольников, являющихся ее гранями, каждая из которых равна половине произведения апофемы на сторону основания, а площадь полной поверхности представляет собой сумму площади боковой поверхности и площади основания. S_(б.п.)=lan/2=(√(b^2-a^2/4) an)/2 S_(п.п.)=an(l/2+a/(4 tan⁡〖(180°)/n〗 ))=an(√(b^2-a^2/4)/2+a/(4 tan⁡〖(180°)/n〗 ))

    Чтобы найти объем пирамиды, необходимо вычислить треть от произведения ее высоты на площадь основания, последовательно подставив выражения для площади и высоты в формулу. V=1/3 S_(осн.) h=(na^2 √(b^2-(a/(2 sin⁡〖(180°)/n〗 ))^2 ))/(12 tan⁡〖(180°)/n〗 )

    Радиус сферы, которая может быть вписана в пирамиду, равен трем объемам, деленным на площадь полной поверхности пирамиды, а радиус сферы, описанной вокруг пирамиды – квадрату бокового ребра, деленному на две высоты. (рис.34.6,34.7) r_1=3V/S_(п.п.) =(a√(b^2-(a/(2 sin⁡〖(180°)/n〗 ))^2 ))/(tan⁡〖(180°)/n〗 (2√(b^2-a^2/4)+a/tan⁡〖(180°)/n〗 ) ) R_1=b^2/2h=b^2/(2√(b^2-(a/(2 sin⁡〖(180°)/n〗 ))^2 ))