• Площадь и сторона "А" прямоугольника

    Прямоугольник - площадь, периметр, сторона, диагональ, угол деления диагональю, угол между диагоналями

    Свойства

    a, b - стороны
    d - диагональ
    α, β - углы между диагоналями
    γ,δ - угол от деления диагональю
    S - площадь
    P - периметр
    Площадь и сторона А прямоугольника

    Вычисление

    Зная в прямоугольнике площадь и сторону можно найти вторую сторону, и затем все остальные параметры по порядку. Вторая сторона прямоугольника будет равна отношению площади к известной стороне. b=S/a

    Для того чтобы найти периметр прямоугольника через площадь и сторону, необходимо подставить в формулу вместо второй стороны полученное отношение P=2(a+b)=2(a+S/a)

    Диагональ прямоугольника можно найти через теорему Пифагора в прямоугольном треугольнике, который она образует. Обе диагонали прямоугольника принимают одно и то же значение. Выразив b через площадь и известную сторону, получим следующее выражение. (рис. 56.1) d_1=d_2=√(a^2+b^2 )=√(a^2+(S/a)^2 )=√(a^2+S^2/a^2 )

    Используя тригонометрические отношения в полученном треугольнике можно найти углы при пересечении диагоналей со сторонами. Для этого проще всего будет использовать тангенс, как отношение катетов друг к другу. Точно также, как и в предыдущих формулах, заменяем неизвестную сторону на равное ей выражение. α=arc tan⁡〖b/a〗=arc tan⁡〖S/a^2 〗 β=arc tan⁡〖a/b=arc tan⁡〖a^2/S〗 〗

    Угол, образованный при пересечении диагоналей, и дополнительный ему до 180° зависят только от углов при диагонали и стороне, и равны удвоенному их значению. (рис. 56.2) γ=2α δ=2β

    Радиус описанной вокруг прямоугольника окружности равен половине диагонали, так как лежит на ней и исходит из точки пересечения диагоналей. (рис. 56.3) R=d/2=√(a^2+S^2/a^2 )/2