• Стороны и апофема усеченной пирамиды

    Усеченная пирамида - ребро, апофема, сторона, площадь, объем, площадь боковой поверхности, периметр, угол наклона граней, угол сторон основания, угол наклона ребер, длина ребер

    Свойства

    a, b - сторона основания
    d - ребро
    f - апофема
    h - высота
    α, β, γ, δ, ζ, - угол
    P - периметр
    Стороны и апофема усеченной пирамиды

    Вычисление

    Стороны оснований правильной усеченной пирамиды дают возможность вычислить все, что связано с основаниями, используя формулы для правильных многоугольников. Среди таких параметров можно перечислить внутренний угол многоугольника, его периметр, площадь, радиус окружности, вписанной в основание, и радиус окружности, которая может быть описана около него. γ=180°(n-2)/n P=n(a+b+d) S_a=(na^2)/(4 tan⁡〖(180°)/n〗 ) S_b=(nb^2)/(4 tan⁡〖(180°)/n〗 ) r_a=a/(2 tan⁡〖(180°)/n〗 ) r_b=b/(2 tan⁡〖(180°)/n〗 ) R_a=a/(2 sin⁡〖(180°)/n〗 ) R_b=a/(2 sin⁡〖(180°)/n〗 )

    Зная апофему усеченной пирамиды, можно вычислить боковое ребро через прямоугольную трапецию, которая их связывает по боковой грани пирамиды. Основаниями такой трапеции являются половины сторон оснований пирамиды, поэтому по прямоугольному треугольнику боковое ребро будет равно радикалу из теоремы Пифагора. (рис. 50.2) d=√(f^2+(b/2-a/2)^2 )=√(f^2+(b-a)^2/4)

    Чтобы вычислить высоту усеченной пирамиды, необходимо найти такую же прямоугольную трапецию во внутреннем пространстве усеченной пирамиды, тогда в такой трапеции и прямоугольном треугольнике высота будет равна аналогичному радикалу через радиусы вписанных в основания окружностей и апофему (рис. 50.4) h=√(f^2-(r_b-r_a )^2 )

    Чтобы рассчитать углы при основаниях усеченной пирамиды и апофеме, можно воспользоваться в этой же трапеции/прямоугольном треугольнике тригонометрическими отношениями и принципом суммы углов трапеции. cos⁡β=(r_b-r_a)/f α=180°-β

    Углы при основаниях и апофеме усеченной пирамиды можно вычислить в трапеции, которую боковое ребро образует с высотой пирамиды подобным образом, через радиусы вписанных в основания окружностей. (рис. 50.3) cos⁡δ=(R_b-R_a)/d ε=180°-δ

    Площадь боковой поверхности усеченной пирамиды равна произведению количества сторон в основании на апофему и полусумму сторон оснований. Чтобы найти площадь полной поверхности через стороны усеченной пирамиды, нужно прибавить к площади боковой поверхности еще два основания. S_(б.п.)=nf (a+b)/2 S_(п.п.)=S_(б.п.)+S_(осн.1,2)=n(f (a+b)/2+a^2/(4 tan⁡〖(180°)/n〗 )+b^2/(4 tan⁡〖(180°)/n〗 ))

    Для того чтобы вычислить объем усеченной пирамиды, необходимо сначала найти высоту через теорему Пифагора, как было указано выше, а затем найти треть произведения высоты на сумму площадей оснований с квадратным корнем из их произведения. V=1/3 h(S_осн1+S_осн2+√(S_осн1 S_осн2 ))