Вы здесь
-
Биквадратное уравнение
Биквадратным считается такое уравнение, в котором все степени неизвестных вдвое больше, нежели в квадратном уравнении. Биквадратное уравнение имеет вид: ax4+bx2+c=0
Решение биквадратного уравнения использует метод замены неизвестной во второй степени на другую неизвестную с последующим возвратом к первоначальной переменной в конце решения.
a(x2)2+bx2+c=0
x2=t
at2+bt2+c=0Далее квадратное уравнение с новой переменной решается через дискриминант по стандартным формулам для нахождения корней квадратного уравнения.
Теперь, зная t, возвращаемся к x, получив простое одноэтапное уравнение, где для нахождения x нужно извлечь квадратный корень из t.
Он-лайн калькулятор решения биквадратного уравнения находит значения корней уравнения, выдавая сразу конечный результат до четырех числовых значений, в зависимости от коэффициентов уравнения.