Вы здесь
-
Коллинеарность и ортогональность векторов
Чтобы определить коллинеарность и ортогональность векторов, воспользуемся стандартными действиями с векторами, основанными на использовании тригонометрических функций синуса и косинуса.
Коллинеарные векторы – это векторы, которые расположены параллельно друг к другу, то есть при наложении дают угол в 0 градусов. Поэтому чтобы проверить коллинеарность векторов, нужно доказать что угол между векторами равен 0, а это проще всего сделать через функцию синуса, так как sin0°=0. В аналитической геометрии синус используется для нахождения векторного произведения двух векторов, которое равно произведению длин векторов на синус угла между ними. Поэтому когда между ними нулевой угол, то синус равен нулю, и все векторное произведение становится равно нулю. Из этого можно сделать и обратный вывод: если векторное произведение двух векторов равно нулю, то эти векторы коллинеарны.
=[×]=|||| sinα
=0,=> sinα=0,=> α=0.Ортогональные векторы расположены по отношению друг к другу под углом 90 градусов. Для их определения используем функцию косинуса, которая дает 0 именно при угле в 90 градусов. Косинус в аналитической геометрии встречается в вычислении скалярного произведения векторов, поэтому, когда он равен нулю, то и скалярное произведение векторов становится равным нулю. Это равноценно заявлению о том, что если скалярное произведение векторов равно нулю, то эти векторы – ортогональны.
=||||cosα
=0,=>cosα=0,=>α=0
Подтемы
- Векторный калькулятор
- Координаты вектора по двум точкам
- Направляющие косинусы вектора
- Длина вектора, модуль вектора
- Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Скалярное произведение векторов
- Угол между векторами
- Проекция вектора на вектор
- Векторное произведение векторов
- Смешанное произведение векторов
- Коллинеарность и ортогональность векторов
- Компланарность векторов