Вы здесь
-
Компланарность векторов
Три вектора считаются компланарными, если они находятся в одной плоскости, то есть при перемещении начала всех векторов в одну точку, их можно будет расположить на одном графике координат.
В аналитической геометрии более важна совокупность трех некомпланарных векторов, так как если совместить их начала с началом координат в трехмерном пространстве, они станут направляющими для построения параллелепипеда. Объем полученного параллелепипеда по значению равен смешанному произведению трех векторов.
V=Если три вектора находятся в одной плоскости, то естественно, параллелепипед будет вырожденным, то есть не будет обладать требуемыми тремя измерениями, и его объем будет нулевым. Таким образом, можно утверждать, что необходимым условием для нулевого объема параллелепипеда является компланарность трех векторов, и наоборот. Если смешанное произведение векторов равно нулю, следовательно, векторы – компланарны.
=0
Подтемы
- Векторный калькулятор
- Координаты вектора по двум точкам
- Направляющие косинусы вектора
- Длина вектора, модуль вектора
- Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Скалярное произведение векторов
- Угол между векторами
- Проекция вектора на вектор
- Векторное произведение векторов
- Смешанное произведение векторов
- Коллинеарность и ортогональность векторов
- Компланарность векторов