Вы здесь

  • Ребро куба

    Куб - сторона, площадь, площадь стороны, объем, длина рёбер, периметр стороны, диагональ, диагональ стороны, радиус вписанной сферы, радиус описанной сферы

    Свойства

    a - ребро
    d - диагональ
    V - объем
    S - площадь
    P - периметр
    r - радиус вписанной сферы
    R - радиус описанной сферы
    Ребро куба

    Вычисление





    Зная ребро куба, геометрический калькулятор может рассчитать все остальные его параметры, такие как объем, площадь, диагонали и радиус сфер, которые могут быть вписаны в куб или описаны вокруг него.

    Площадь стороны куба, то есть его грани, является площадью квадрата со стороной а, являющейся одновременно ребром куба. Поэтому чтобы вычислить площадь стороны куба, нужно применить стандартную формулу площади квадрата. S=a^2

    Площадь боковой поверхности куба состоит из 4 боковых граней, а площадь полной поверхности – из 6 граней, поэтому их формулы представляют собой произведения площади одной грани куба на их необходимое количество. S_(б.п.)=4a^2 S_(п.п.)=6a^2

    Чтобы вычислить объем куба, зная его ребро, необходимо возвести его в третью степень, так как все три измерения куба – длина, ширина и высота, - равны между собой. V=a^3

    В некоторых случаях появляется необходимость рассчитать периметр куба, то есть сумму длин всех его ребер. В таком случае, периметр куба равен ребру куба, умноженному на 12. P=12a

    Диагональ грани куба d – это диагональ квадрата, для которой была выведена стандартная формула по теореме Пифагора. d=a√2

    Диагональ куба D в свою очередь соединяет противоположные вершины верхнего и нижнего оснований, образуя с боковым ребром и диагональю основания прямоугольный треугольник. Теорема Пифагора в таком треугольнике приводит к единой формуле и для диагонали куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3

    По аналогии с вписанной и описанной окружностью около квадрата, вписанная и описанная сферы около куба имеют схожие определения радиусов. Радиус вписанной сферы представляет собой половину ребра куба, а радиус описанной окружности – половину диагонали куба. (рис. 2.2, рис.2.3) r=a/2 R=D/2=(a√3)/2