Вы здесь

  • Стороны и высота параллелограмма

    Параллелограмм - площадь, периметр, угол, диагональ, угол между диагоналями, биссектриса угла, высота

    Свойства

    a, b - стороны
    α, β - углы
    γ, δ - углы между диагоналями
    h - высота
    l - биссектриса
    d1, d2 - диагональ
    Стороны и высота параллелограмма

    Вычисление





    В параллелограмме противоположные стороны друг другу параллельны, а прилежащие находятся образуют определенный угол, поэтому чтобы определить большинство параметров параллелограмма нужно знать кроме сторон высоту или угол, их соединяющий. Если заданы стороны и высота, то одними из первых можно рассчитать периметр и площадь параллелограмма. Периметр параллелограмма, зная стороны, выглядит как их удвоенная сумма, а площадь является произведением высоты и стороны, на которую она опущена. P=2(a+b) S=ah_a=bh_b

    Чтобы иметь возможность продолжать расчеты, необходимо найти углы между сторонами α и β. Используя прямоугольный треугольник, образованный высотой со стороной параллелограмма, выводим их взаимосвязь в тригонометрическое отношение. Затем, зная один из углов, в зависимости от того, какая высота была дана, отнимаем его из 180 градусов, чтобы найти второй. (рис.106.1) sin⁡α=h_b/a sin⁡β=h_a/b α=180°-β β=180°-α

    Зная углы и стороны, можно найти диагонали параллелограмма по теореме косинусов в треугольниках, которые они образуют со сторонами. Каждая диагональ будет равна корню из суммы квадратов сторон параллелограмма и разности удвоенного их произведения на косинус угла между ними. (рис.106.2) d_1=√(a^2+b^2-2ab cos⁡β ) d_2=√(a^2+b^2-2ab cos⁡α )

    Используя эту же теорему косинусов, можно найти угол между диагоналями в одном из четырех треугольников, образованных ими, где сторонами являются половины диагоналей и одна из сторон параллелограмма. (рис.106.3) cos⁡γ=(〖d_1/4〗^2+〖d_2/4〗^2-a^2)/((d_1 d_2)/4)=(〖d_1〗^2+〖d_2〗^2-4a^2)/(2d_1 d_2 ) cos⁡δ=(〖d_1〗^2+〖d_2〗^2-4b^2)/(2d_1 d_2 )

    Биссектрисы параллелограмма, проведенные из углов α и β, образуют равнобедренные треугольники, в которых сама биссектриса является основанием, а боковыми конгруэнтными сторонами становится меньшая сторона параллелограмма. Треугольник считается равнобедренным, так как из свойств биссектрисы и суммы углов в треугольнике следует, что углы при основании такого треугольника конгруэнтны. Используя теорему косинусов, можно найти биссектрисы параллелограмма через стороны. (рис. 106.4) l_α=√(2a^2-2a^2 cos⁡β )=a√(2-2 cos⁡β ) l_β= b√(2-2 cos⁡α )