Периметр основания правильной пирамиды равен произведению длины стороны основания на их удвоенное количество, а площадь – отношению количества сторон, умноженных на квадрат стороны, к четырем тангенсам угла из 180 градусов, деленных на количество сторон в основании. P=n(a+b) S=(na^2)/(4 tan〖(180°)/n〗 )
Радиус окружности, вписанной в правильный многоугольник, являющимся основанием правильной пирамиды, равен отношению стороны к двум тангенсам того же угла, а радиус окружности, описанной вокруг такого многоугольника, - отношению стороны к двум синусам. (рис.34.1,34.2) r=a/(2 tan〖(180°)/n〗 ) R=a/(2 sin〖(180°)/n〗 )
Чтобы найти внутренний угол многоугольника в основании правильной пирамиды, нужно умножить 180 градусов на отношение разности количества сторон и двух единиц к самому количеству сторон такого многоугольника. (рис.34.3) γ=180°(n-2)/n
Зная апофему и сторону основания правильной пирамиды, можно найти боковое ребро и высоту пирамиды из прямоугольных треугольников, образованных ими, через теорему Пифагора. (рис.34.4, 35.1) h=√(l^2-r^2 )=√(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ) b=√(l^2+a^2/4)
Угол между апофемой и основанием легко вычислить, найдя его косинус, который равен отношению радиуса вписанной в основание окружности к апофеме, и воспользовавшись таблицами Брадиса. Угол между боковым ребром и основанием находится аналогично через косинус, как отношение радиуса окружности, описанной вокруг основания, к боковому ребру. (рис.34.4, 34.5) cosα=R/b=a/(2 sin〖(180°)/n〗 √(l^2+a^2/4)) cosβ=r/l=a/(2l tan〖(180°)/n〗 )
Чтобы найти площадь боковой поверхности пирамиды через апофему и сторону основания, необходимо сначала найти площадь одной ее грани-треугольника, и затем умножить ее на количество граней – сторон в основании. Площадь полной поверхности пирамиды будет равна сумме площади боковой поверхности и площади основания. S_(б.п.)=lan/2 S_(п.п.)=an(l/2+a/(4 tan〖(180°)/n〗 ))
Объем правильной пирамиды равен произведению площади основания на высоту, деленному на три. Подставив необходимое выражение вместо площади основания и высоты, получим форму объема пирамиды через апофему и сторону основания. V=1/3 S_(осн.) h=(na^2 √(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))/(12 tan〖(180°)/n〗 )
Чтобы вписать в правильную пирамиду сферу, ее радиус должен быть равен трем объемам, деленным на площадь полной поверхности пирамиды, а чтобы описать такую же сферу вокруг пирамиды, нужно чтобы ее радиус совпадал с отношением квадрата бокового ребра к двум высотам такой пирамиды. (рис.34.6, 34.7) r_1=3V/S_(п.п.) =(na^2 √(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))/(4 tan〖(180°)/n〗 (2l+a/tan〖(180°)/n〗 ) ) R_1=b^2/2h=(4l^2+a^2)/(8√(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))