Ромб – это геометрическая фигура, у которой все стороны равны, поэтому ее периметр, как и периметр квадрата равен стороне, умноженной на 4. Площадь ромба зависит не только от его стороны, но и высоты, так как ромб является параллелограммом, эта формула заимствована от него. Чтобы вычислить площадь ромба необходимо умножить высоту на его сторону. P=4a S=ah
Углы ромба также связаны с высотой, так как она образует внутри ромба прямоугольный треугольник. Синус угла α в ромбе равен отношению высоты, как катета, к стороне ромба, как гипотенузе. Угол β можно найти через разность 180 градусов и угла α. (рис.115.1) sinα=h/a β=180°-α
Зная любой угол ромба, можно найти его диагонали. Поскольку диагонали ромба пересекаются под прямым углом, они делят ромб на четыре конгруэнтных прямоугольных треугольника, катетами которых являются половины диагоналей и гипотенузой – сторона ромба. Соответственно в каждом таком треугольнике, углы равны половинам углов ромба. Вычислить диагонали через угол α можно, приравняв их к стороне ромба умноженной на синус или косинус α соответственно. (рис.115.2) d_1=a sin〖α/2〗 d_1=a cos〖α/2〗
Так как ромб является равносторонним многоугольником, следовательно, в него можно вписать окружность. Радиус вписанной окружности соединяет ее центр в точке пересечения диагоналей и сторону ромба перпендикулярным ей отрезком. Поскольку единственным перпендикуляром в ромбе является высота, то в совокупности с вышеописанным свойствами можно сделать вывод, что радиус равен половине высоты ромба. (рис.115.3) r=h/2