Вы здесь

  • Шаровой сегмент

    Шар - радиус, объем, площадь, диаметр, окружность

    Свойства

    Шаровой сегмент

    Вычисление





    Поскольку шаровой сегмент представляет собой часть сферы, сечение которой находится под прямым углом к оси вращения, следовательно, становится возможным найти объем шарового сегмента, площадь поверхности, периметр сечения сферы и его диаметр, зная радиус и высоту шарового сегмента.

    Диаметр шарового сегмента, также как и диаметр сферы, равен удвоенному радиусу тела. d=2r

    Периметр сечения сферы, образующего шаровой сегмент, является длиной окружности с заданным радиусом, и равен удвоенному произведению радиуса на число π. P=2πr

    Чтобы вычислить объем шарового сегмента через радиус и высоту, нужно найти треть произведения числа π и квадрата радиуса на разность утроенного радиуса и высоты. V=(πh^2 (3R-h))/3

    Найти площадь поверхности шарового сегмента, зная радиус и высоту, можно, умножив длину окружности, являющуюся периметром сечения сферы, на высоту шарового сегмента. Так как периметр сечения равен удвоенному произведению числа π и радиуса шарового сегмента, то формула площади поверхности шарового сегмента выглядит следующим образом: S=2πrh