Зная радиус сферы, вписанной в тетраэдр, нужно сначала найти ребро тетраэдра, а также можно без хитрых преобразований рассчитать сразу радиус сферы, описанной около тетраэдра. a=2√6 r_1 R_1=3r_1
Зная ребро тетраэдра через радиус вписанной сферы, можно рассчитать периметр тетраэдра, равный длине всех шести его ребер, площадь одной грани и площадь полной поверхности тетраэдра, состоящей из четырех таких граней. P=12√6 r_1 S_1=6√3 〖r_1〗^2 S_(п.п.)=4S_1=24√3 〖r_1〗^2
Кроме радиусов вписанной и описанной около тетраэдра сфер, у него есть также радиусы вписанной и описанной окружностей около грани, являющейся основанием, которые можно вычислить через радиус вписанной сферы. r=√2 r_1 R=2√2 r_1
Высота и апофема тетраэдра располагаются под прямым углом к основанию с той лишь разницей, что высота падает в центр основания, являющийся по совместительству центром для вписанной и описанной окружностей основания, а апофема опускается по боковому ребру в центр стороны основания. h=4r_1 l=3√2 r_1
Чтобы вычислить объем тетраэдра через радиус сферы, вписанной в него, нужно возвести радиус в третью степень и умножить его на восемь корней из трех. V=8√3 〖r_1〗^3