Вы здесь

  • Равнобедренная трапеция

    Равнобедренная трапеция - сторона, площадь, высота, периметр, средняя линия, диагональ, угол, угол между диагоналями, радиус вписанной окружности, радиус описанной окружности

    Свойства

    Равнобедренная трапеция

    Вычисление





    В равнобокой трапеции боковые стороны и углы при основаниях равны между собой, следовательно, все формулы значительно упрощаются. Периметр такой трапеции равен сумме двух оснований и удвоенной боковой стороны. P=2a+b+d

    Высота равнобокой трапеции является катетом в прямоугольном треугольнике, где гипотенуза – боковая сторона трапеции, а второй катет – половина разности большего и меньшего оснований. Вычислить высоту в равнобокой трапеции можно с помощью теоремы Пифагора в этом треугольнике. (рис.104.1) h=√(a^2-(c-b)^2/4)

    Средняя линия трапеции не связана с боковыми сторонами и представляет собой сумму большего и меньшего основании, разделенную на два. m=(b+c)/2

    Площадь равнобокой трапеции вычисляется также как и обычной – произведением высоты на среднюю линию. S=hm

    Найти диагонали в равнобокой трапеции проще, так как высоты, входящие с ними в прямоугольные треугольники, делят большее основание на три части, одна из которых равна меньшему основанию, а две другие равны между собой. Сами диагонали также равны друг другу и вычислить их можно по формулам, приведенным из теоремы Пифагора. (рис.104.2) d=√(h^2+((b+c)/2)^2 )=√(a^2-(c-b)^2/4+(b+c)^2/4)=√((2a^2-b^2-c^2)/2)

    Внутри равнобокой окружности можно вписать окружность, радиус которой будет равен квадратному корню из произведения оснований, деленному на два, если сумма боковых сторон равна сумме оснований (что представляет собой половину высоты) (рис.104.3) r=√bc/2

    Радиус окружности, описанной вокруг равнобокой трапеции, ищется как радиус описанной окружности треугольника, образованного ее диагональю со сторонами. (рис.104.4) R=abd/√((a+b+d)(a+b)(a+d)(b+d))