Вы здесь

  • Радиус описанной окружности равностороннего треугольника

    Равносторонний треугольник - сторона, периметр, площадь, высота,  радиус вписанной окружности, радиус описанной окружности

    Свойства

    Радиус описанной окружности равностороннего треугольника

    Вычисление





    Зная радиус описанной окружности, можно найти сразу не только сторону равностороннего треугольника, но и радиус вписанной в него окружности, так как они напрямую связаны друг с другом. Сторона треугольника будет равна произведению радиуса описанной окружности на корень из трех, а радиус вписанной окружности – его половине. (рис.100) a=√3 R r=R/2

    Чтобы вычислить периметр и площадь равностороннего треугольника через радиус описанной вокруг него окружности, необходимо подставить полученное выражение для стороны в соответствующие формулы. P=3a=3√3 R S=(√3 a^2)/4=(3√3 R^2)/4

    Высоты, медианы и биссектрисы являются одними и теми же отрезками в равностороннем треугольнике, и вычислить их можно по единой формуле, где искомая величина равна корню из трех, умноженному на сторону и деленному на два. Подставив вместо стороны произведение радиуса и корня из трех, получаем, что высота равна трем радиусам, деленным на два. (рис.99) h=m=l=(√3 a)/2=(√3 √3 R)/2=3R/2

    Чтобы найти среднюю линию равностороннего треугольника через радиус описанной вокруг него окружности, необходимо разделить произведение радиуса и корня из трех на два. (рис.97.3) M=(√3 R)/2