Вы здесь

  • Стороны равностороннего треугольника

    Равносторонний треугольник - сторона, периметр, площадь, высота,  радиус вписанной окружности, радиус описанной окружности

    Свойства

    Стороны равностороннего треугольника

    Вычисление





    В равностороннем треугольнике все стороны и все углы равны. Стороны меняют свое значение в зависимости от размеров треугольника, а углы всегда равны 60 градусам. Зная сторону равностороннего треугольника можно вычислить все остальные его параметры по упрощенным формулам. Периметр равностороннего треугольника равен утроенной стороне, а площадь – квадрату стороны, умноженному на отношения корня из трех к четырем. (рис. 97.1) P=3a S=(√3 a^2)/4

    Все высоты в равностороннем треугольнике совпадают с медианами и биссектрисами, и все между собой равны. Это значительно упрощает расчеты, так как объединяет их все в одну формулу. Ее проще всего рассчитывать как высоту, так как она является катетом в прямоугольном треугольнике с заданными углами. (рис. 97.2) h=m=l=(√3 a)/2

    Поскольку все стороны такого треугольника равны между собой, соответственно, их средние линии также равны и представляют собой половину стороны a. (рис.97.3) M=a/2

    Центр вписанной окружности в равносторонний треугольник совпадает с центром описанной окружности, так как все высоты являются одновременно медианами, биссектрисами и медиатриссами и пересекаются в одной точке. Отрезок, соединяющий центр со стороной перпендикуляром, является радиусом вписанной окружности, а отрезок, соединяющий центр с вершиной угла – радиусом описанной окружности. Оба они зависят только от стороны треугольника и выражаются следующими формулами. (рис.97.4,97.5) R=a/√3 r=a/(2√3)