Вы здесь
-
Высота призмы
Объемное тело, в основании которого лежит многоугольник, называется призмой. У стандартной призмы оба основания конгруэнтны, что значит, что все их стороны и углы соответственно равны. Призма может быть прямой и наклонной, в прямой призме все отрезки, соединяющие соответствующие вершины оснований, перпендикулярны им и равны между собой, а также совпадают по значению с высотой. Эти отрезки, называемые боковыми ребрами, образуют со сторонами основания прямоугольники, которые будут конгруэнтны между собой в случае призмы с правильным многоугольником в основании. Таким образом, зная сторону многоугольника в основании и площадь боковой поверхности призмы, можно найти высоту по следующей формуле, где a – это сторона основания, а n – их количество:
Так как высота призмы прямо пропорционально связана с ее объемом, то использование этого отношения и есть самый простой и быстрый способ ее нахождения, и это актуально и для наклонных призм в том числе. Итак, чтобы вычислить высоту призмы через объем необходимо конвертировать формулу объема призмы таким образом, чтобы высота стала неизвестным параметром. Тогда она примет значение отношения объема к площади основания призмы: