Вы здесь

Радиус вписанной и описанной окружности

В немногие из многоугольников можно вписать окружность. Окружность будет называться вписанной в многоугольник, если она касается всех его сторон. При этом, поскольку каждая сторона является касательной к окружности, то из свойств последней следует, что она находится под прямым углом к радиусу вписанной окружности. Радиусы, проведенные к сторонам многоугольника из центра окружности, имеют первостепенное значение, так как они фигурируют во многих расчетах по данным фигурам, в том числе и без окружности, как таковой. Центр окружности, вписанной в многоугольник, можно найти, проведя две биссектрисы из любых углов, точка их пересечения и будет искомым центром. Для того чтобы различать в формулах радиусы вписанной и описанной окружностей их обозначают r и R соответственно длине.


Вокруг определенных геометрических фигур можно описать окружность. Если для каждой стороны провести срединный перпендикуляр, или медиатрису, то точка их пересечений (достаточно двух) будет центром описанной вокруг фигуры окружности. Такая окружность содержит все вершины углов многоугольника. Радиусы, соединяющие центр окружности с вершинами многоугольника, участвуют во многих вычислениях и решениях типовых задач на нахождение сторон, площадей и других параметров данных фигур. Радиусы описанных окружностей обозначаются R, а радиусы вписанных окружностей – r, для различия.